

Data Sheet Version 1.2/May 2022 ML-4259-3729-T1S1

拥有核心芯片技术的MEMS传感技术公司

A MEMS Sensor Company with Advanced Core Chip Technology

Product Specification

ML-4259-3729-T1S1 Bottom -port analog silicon microphone

Description

ML-4259-3729-T1S1 is high-performance top-port analog silicon microphone that receives the sound signal from the top side hole on lid. By using our own innovative and unique MEMS silicon microphone chip design, MicroLink Senstech provides a series of packaged MEMS silicon microphones with compact size to achieve high performance such as high SNR, high sensitivity, excellent reliability and broad frequency response. This series of MEMS microphones find wide applications in cell phones, tablets, wearable devices and other portable electronic devices.

• Features

- > Compact size of $3.76 \times 2.95 \times 1.1 \text{ mm}^3$
- > Sensitivity of -42dBV/Pa (± 1 dBV/Pa)
- ➢ High signal-to-noise ratio of 59 dB
- ▶ Extremely low THD of 0.1% at 94 dB SPL
- ▶ High acoustic overload point of 133 dB SPL
- ▶ High immune to RF/EM interference
- ➢ High mechanical strength
- ➢ High temperature resistance
- ➢ Excellent reliability

• Applications

Cell phones/smartphones, tablets, learning machines/game stations, MP3/DC/DV, computers/laptops, Bluetooth headsets/headphones, wearable smart systems, Iot related devices, etc.

• Absolute maximum ratings

Supply voltage: VDD to GND	$-0.3V \sim 5V$
ESD Tolerance:	
Lid Mode	8kV
I/O Pin Mode	4kV

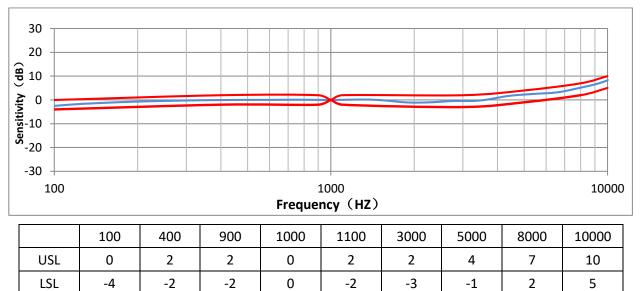
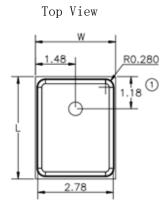
Temperature Characteristics						
Parameter Conditions Min Typ. Max Unit						
Operating Temperature		-40		+85	°C	
Stanara Tamanatuna	Solder on PC board	-40		+105	°C	
Storage Temperature	In Tape and Reel	-10		+50	°C	

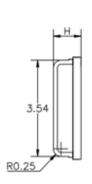
• Acoustic and electrical specifications

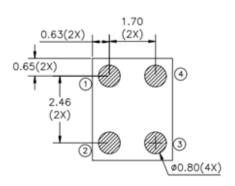
Test conditions: 23°C±2°C, 55%±5% R.H., VDD=1.8V, no load, unless otherwise indicated

Parameter	Symbol	Condition	Min.	Тур.	Max	Unit
Sensitivity	Sens	94dB SPL @1kHz	-43	-42	-41	dBV/Pa
Signal to Noise Ratio	SNR	20Hz to 20KHz,A- weighted	-	59	-	dB (A)
Output Impedance	$Z_{\rm out}$	@ 1 kHz	_	-	300	Ω
Supply Voltage	V_{DD}		1.6	-	3.6	V
Current Consumption	I_{DD}		_	110	130	μA
Dimension			3. 76×2. 95×1. 1		mm	
Directivity			Omnidirectional			
Frequency Response	F		100~10k		Hz	
Power Supply Rejection	PSR	217Hz,0.1Vpp Square on VDD	_	-100	_	dBV (A)
Power Supply Rejection Ratio	PSRR	200mVpp sinewave @ 1 kHz	-	66	-	dB
Total Harmonic	THD	94 dB SPL @ 1kHz	_	0.1	-	%
Distortion	11112	114 dB SPL @ 1kHz	-	0.5	-	%
Acoustic	AOP	1% THD @ 1kHz	-	129	-	dBSPL
Overload Point	1101	10% THD @ 1kHz	-	133	-	dBSPL

• Frequency response

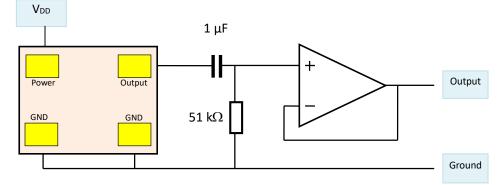




Figure 1. Typical free field frequency response (Normalized to 1 KHz)


Bottom View

• Mechanical specifications

Side View



Dimension				
Item	Dimension	Tolerance		
Length(L)	3.76 mm	± 0.1 mm		
Width(W)	2.95 mm	± 0.1 mm		
Height(H)	1.10 mm	± 0.1 mm		
AP	0.5mm	± 0.05 mm		

Pin #	Pin Name	Description
1	V_{DD}	Power
2	GND	Ground
3	GND	Ground
(4)	V _{OUT}	Signal output

Figure 2. Detailed mechanical drawings

• Application circuit diaphragm

• Example land pattern

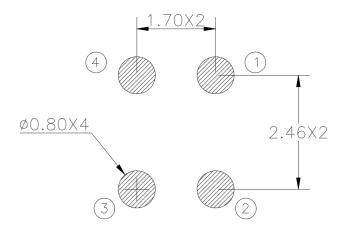
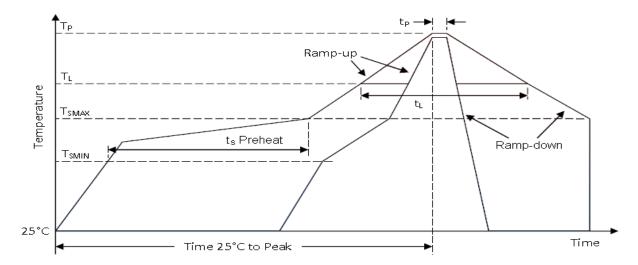



Figure 3. Recommended landing pattern on customers' PCB

Recommended reflow profile

C	Parameter (lead-free)	
Average temperature change rate (T_{SMAX} to T_{P})		3ºC/second max.
Preheat	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	150°C 200°C
Reflow	Time (T_{SMIN} to T_{SMAX}) (t_s)Temperature (T_L)Time (t_L)	60-180 seconds 217°C 60-150 seconds
Peak temperatureTemperature (T_P) Time (t_P)		260°C 20-40 seconds
Cooling rate $(T_P \text{ to } T_{SMAX})$		6ºC/second max
Time required from 25°C to peak temperature		8 minutes max

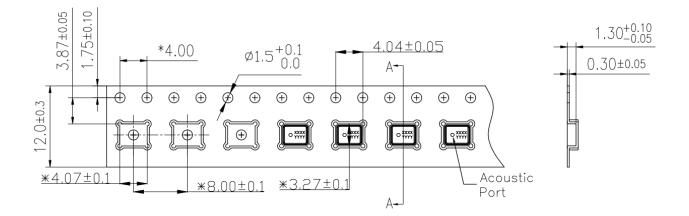
Figure 4. Recommended leadless solder reflow temperature profile

Notes:

1) The air blow speed during reflow process should be low to avoid impurity entering the acoustic hole during reflow process.

IC·SENS·MEMS

- 2) Do not wash or clean the product to avoid impurity entering the product.
- 3) Do not carry out the reflow process more than 5 times. If the melting point of solders is lower, the peak temperature should be accordingly reduced.


• Reliability specifications

Test Item	Description
Temperature/Humidity Bias	168 hours at +85°C/85% R.H. under bias (JESD22-A101A-B)
Thermal shock	100 cycles air-to-air thermal shock from -40°C to +125°C with 15minute soaks. (IEC 68-2-4)
High Temperature Storage	168 hours at +105°C environment(IEC 68-2-2)
Low Temperature Storage	168 hours at -40°C environment(IEC 68-2-1)
High Temperature Bias	1,000 hours at +105°C under bias(IEC 68-2-2)
Low Temperature Bias	1,000 hours at -40°C under bias(IEC 68-2-1)
Drop test	Using 150g fixture, 3 drops along each of 6 axes from 1.5m height onto slippery marble floor (IEC 68-2-27)
ESD-HBM	3 discharges of ±4 kV direct contact to I/O pins. (MIL 883E, Method 3015.7)
ESD-LID/GND	3 discharges of ± 8 kV direct contact to lid while unit is grounded. (IEC 61000-4-2)
ESD-MM	3 discharges of ± 200 V direct contact to I/O pins. (ESD STM5.2)
Vibration test	4 cycles of 20 to 2,000 Hz sinusoidal sweep with 20 G peak acceleration lasting 12 minutes in X, Y, and Z directions (Mil-Std-883E, Method 2007.2 A)
Reflow test	5 reflow cycles with peak temperature of +260 $^\circ \! \mathrm{C}$
Mechanical Shock	3 pulses of 10,000 G in the X, Y, and Z direction (IEC $68\mathcar{-}2\mathcar{-}2\mathcar{-}2$, Test Ea)

Notes: After reliability tests are performed, the sensitivity of the microphones shall not deviate more than 3 dB from its initial value. After 3 reflow cycles, the sensitivity of the microphone shall not deviate more than 3dB from its initial value.

• Packaging and marking detail

Model Number	Reel Diameter	Quantity Per Reel	Quantity Per Carton
ML-4259-3729-T1S1	13"	5,000	5,000 * 10 = 50,000Pcs

Notes:

- Dice are packaged in black carrier band which uses anti-electrostatic material. Each volume of packaged products is 5000 pcs.
- 2) The space between two dice is 8mm packaged in the carrier band with 12-mm width rolled in the reel of 13-inch diameter.
- The package requirements mentioned below is the company's standard delivery specifications. If you need special packages, please contact our sales staff.
- 4) All dimensions are in millimeters (mm) with tolerance of \pm 0.3mm.

Materials statement

- \blacktriangleright Meets the requirements of the European RoHS directive 2011/65/EC as amended.
- Meets the requirements of the industry standard IEC 61249-2-21:2003 for halogenated substances and SV SensTech Green Materials Standards Policy section on Halogen-Free.

• Remarks

- ▶ MSL (moisture sensitivity level) Class 1.
- > Maximum of 3 reflow cycles is recommended.
- > In order to minimize device damage:
 - Do not board wash or clean after the reflow process.
 - Do not brush board with or without solvents after the reflow process.
 - Do not directly expose to ultrasonic processing, welding, or cleaning.
 - Do not insert any object in the port hole of device at any time.
 - Do not apply over 30 psi of air pressure into the port hole.
 - Do not pull a vacuum over the port hole of microphone.
 - Do not apply a vacuum when repacking into sealed bags at a rate faster than 0.5 atm/sec.

Version	Updated Content	Updated Date
1.0	Initial release	2019-02-19
1.1	Logo change	2021-10-14
1.2	Update Reliability specifications	2022-5-13

• Version updates

• Contact

SV SensTech Co., Ltd

Address: F2, No. 200, Linghu Avenue, Wuxi, Jiangsu, Zip code 214135 Tel.: 86-510-85622282 Email: sales@svsens.com Website: www.svsens.com 华景传感科技(无锡)有限公司 中国传感网国际创新园 江苏省无锡市新吴区菱湖大道200号F2栋 邮编: 214135 电话: (86) 0510-85622282 邮箱: sales@svsens.com 网页: www.svsens.com