

Data Sheet

Version 1.2/May 2022 ML-2664-3526-DT1H1

切方核心节片柱子的MENAC体成块子公司

拥有核心芯片技术的MEMS传感技术公司

A MEMS Sensor Company with Advanced Core Chip Technology

上海
芯片研发:上海张江

无锡 研发测试中心:无锡高新区

北京 ^{华北销售中心:北京海淀}

德国

苏州 _{封测生产:苏州高新区}

深圳
华南销售中心:深圳南山

Product Specification

ML-2664-3526-DT1H1 Top-port digital silicon microphone

Description

ML-2664-3526-DT1H1 is high-performance top-port digital silicon microphone that receives the sound signal from the hole on top PCB. By using our own innovative and unique MEMS silicon microphone chip design, MicroLink Senstech provides a series of packaged MEMS silicon microphones with compact size to achieve high performance such as high SNR, high sensitivity, excellent reliability and broad frequency response. This series of MEMS microphones find wide applications in smart speakers, cell phones, tablets, wearable devices and other portable electronic devices.

Features

- \triangleright Compact size of 3.5 \times 2.65 \times 0.94 mm³
- \triangleright Sensitivity of -26dBFS (±1dBFS)
- ➤ High signal-to-noise ratio of 64 dB
- > Extreme low THD of 0.1% at 94 dB SPL
- > PDM Output

- > High immune to RF/EM interference
- > High mechanical strength
- > High temperature resistance
- > Excellent reliability

Applications

Laptops, automotives, smartphones, Bluetooth headsets/headphones, TWS, wearable electronics, IoT related devices, etc.

Absolute maximum ratings

Parameter	Absolute Maximum Rating	Units
Vdd, DATA to Ground	-0.3, +5.0	V
CLOCK to Ground	-0.3, +5.0	V
SELECT to Ground	-0.3, +5.0	V
Input Current	±5	mA
Short Circuit to/from DATA	Indefinite to Ground or Vdd	sec
Operating Temperature	-40 to +85	° C

Notes:

- 1) Stresses exceeding these "Absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only.
- 2) Functional operation at these or any other conditions beyond those indicated under "Acoustic and electrical specifications" is not implied.
- 3) Exposure beyond those indicated under "Acoustic and electrical specifications" for extended periods may affect device reliability.

Acoustic and electrical specifications

General Microphone Specifications

Test conditions: $23^{\circ}\text{C}\pm2^{\circ}\text{C}$, $55\%\pm5\%$ R.H., VDD=1.8V, Fclock=2.4 MHz, SELECT grounded, no load, 100nF capacitor between VDD and GND, unless otherwise indicated

Parameter		Symbol	Condition	Min.	Тур.	Max	Unit
Supply Volt	age	Vdd		1.6		3.6	V
Sleep Curre	nt	Isleep	Fclock≤1kHz		32		μA
	Sleep Mode	Fclock		0		250	kHz
Clock Frequency Range	Low Power Mode	Fclock		350	768	800	kHz
Kange	Normal Mode	Fclock		1.024	2.4	3.072	MHz
Directivity				Omnidirectional			nal
Data Format				1/2 Cycle 1-bit PDM			t PDM
Output Load		Cload				140	pF
Fall Asleep	Time	Tslp	Fclock<250kHz			20	μs
Wake-up Tim	e	Twk	Fclock>350kHz			20	ms
Power-up Ti	me	Tpu		20		ms	
Mode Change	Time	Ттс		20 д		μs	
Dimension				3. 50*2. 65*0. 94 mm³			mm ³
Directivity				Omnidirectional			
Frequency R	esponse	F			100~10l	ζ.	Hz

Normal Mode

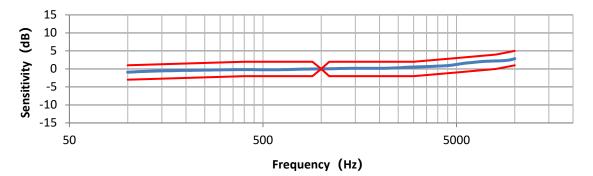
Test conditions: $23^{\circ}\text{C}\pm2^{\circ}\text{C}$, $55\%\pm5\%$ R.H., VDD=1.8V, Fclock=2.4 MHz, SELECT grounded, no load, 100nF capacitor between VDD and GND, unless otherwise indicated

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Sensitivity	Sens	94dB SPL @1kHZ	-27	-26	-25	dBFS
Signal to noise ratio	SNR	94dB SPL @1kHz		64		dB (A)
Current consumption	Idd	Vdd=1.8V, f _{CLOCK} =2.4MHz		850		μА

Total Harmonic Distortion	THD	94 dB SPL @ 1kHz	0.1	%
Acoustic Overload Point	AOP	10% THD @ 1kHz	120	dBSPL
Power Supply Rejection	PSR	100mVpp square wave @ 217 Hz, A-weighted	-80	dBFS (A)
Power Supply Rejection Ratio	PSRR	200mVpp sine wave @1kHz	50	dBV/FS

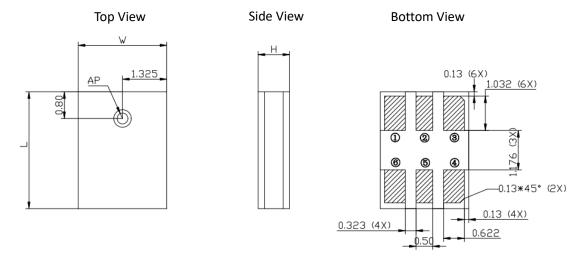
Low-Power Mode

Test conditions: $23^{\circ}\text{C}\pm2^{\circ}\text{C}$, $55\%\pm5\%$ R.H., VDD=1.8V, Fclock=768kHz, SELECT grounded, no load, 100nF capacitor between VDD and GND, unless otherwise indicated


Parameter	Symbol	Condition	Min	Тур	Max	Unit
Sensitivity	Sens	94dB SPL @1kHz	-27	-26	-25	dBFS
Signal to Noise Ratio	SNR	94dB SPL @1kHz, A-weighted (BW=8kHz)		63		dB (A)
Current Consumption	Idd			380		μA
Total Harmonic Distortion	THD	94 dB SPL @1kHz		0.1		%
Acoustic Overload Point	AOP	10% THD @1kHz		120		dBSPL
Power Supply Rejection	PSR	100mVpp square wave @ 217 Hz, A-weighted		-80		dBFS (A)
Power Supply Rejection Ratio	PSRR	200mVpp sine wave @1kHz		50		dBV/FS

• Microphone interface specifications

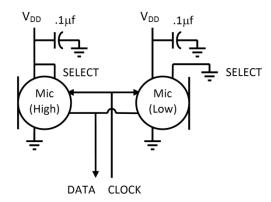
Parameter	Symbol		Unit		
rarameter	Буш БО1	Min	Min Type		OHIT
Logic input High	V_{ih}	$0.65 \times VDD$		VDD+0.3	V
Logic input Low	V_{i1}	-0.3		0.35×VDD	V
Logic Output High	$ m V_{oh}$	VDD-0.45			V
Logic Output Low	V_{ol}			0.45	V
Clock Duty Cycle		40		60	%


• Frequency response

Hz	100	400	900	1000	1100	3000	5000	8000	10000
USL	1	2	2	0	2	2	3	4	5
LSL	-3	-2	-2	0	-2	-2	-1	0	1

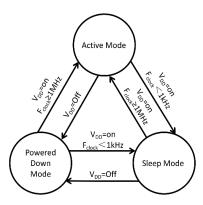
Figure 1. Typical free field frequency response (normalized to 1 kHz)

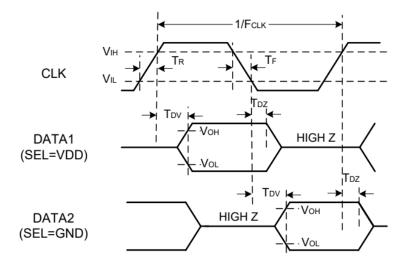
Mechanical specifications


Dimension					
Item	Dimension	Tolerance			
Length(L)	3.5 mm	±0.1 mm			
Width(W)	2.65 mm	± 0.1 mm			
Height(H)	0.94 mm	±0.1 mm			
AP	0.325mm	±0.05 mm			

Pin #	Pin Name
1)	VDD
2	CLOCK
3	DATA
4/6	GND
5	SELECT

Figure 2. Detailed mechanical drawings


• Interface circuit


Microphone	SELECT	Asserts DATA On	Latch DATA On
Mic (High)	V_{DD}	Rising Clock Edge	Falling Clock Edge
Mic (Low)	GND	Falling Clock Edge	Rising Clock Edge

Place 100nF decoupling capacitor between VDD and GND, and place this capacitor as near to microphone's VDD PIN as possible.

Device state diagram

• Time diagram

Parameter	Symbol	Min	Тур	Max	Conditions
Time required for data valid on the rising edge clock	${ m t_{ m dvr}}$	24 ns		48 ns	$R_L=1$ M Ω , $C_L=12$ pF
Time required for data valid on the falling edge clock	${ m t}_{ m dvf}$	24 ns		48 ns	$R_L=1$ $M\Omega$, $C_L=12$ pF
Time required for data to be Z	$t_{ m dz}$	0 ns		20 ns	$R_L=1$ $M\Omega$, $C_L=12$ pF

• Example land pattern

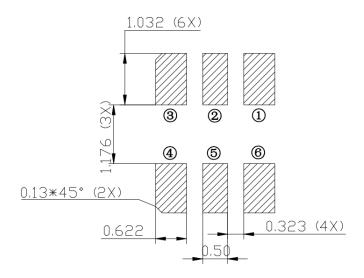
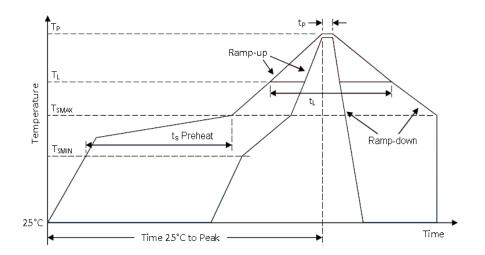



Figure 3. Recommended landing pattern on customers' PCB

Recommended reflow profile

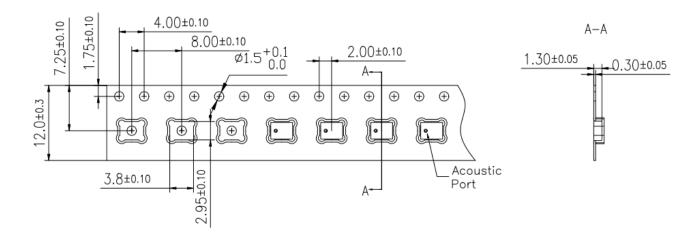
D	Parameter (lead-free)	
Average temperature chan	ge rate $(T_{SMAX}$ to $T_P)$	3ºC/second max.
	Minimum temperature (T _{SMIN})	150°C
Preheat	Maximum temperature (T _{SMAX})	200°C
	Time $(T_{SMIN} \text{ to } T_{SMAX})$ (t_s)	60-180 seconds
Reflow	Temperature (T _L)	217°C
Kellow	Time (t _L)	60-150 seconds
Dook tomponeture	Temperature (T _P)	260°C
Peak temperature	Time (t _P)	20-40 seconds
Cooling rate $(T_P \text{ to } T_{SMAX})$	6°C/second max	
Time required from 25°C t	8 minutes max	

Figure 4. Recommended leadless solder reflow temperature profile

Notes:

- 5) The air blow speed during reflow process should be low to avoid impurity entering the acoustic hole during reflow process.
- 6) Do not wash or clean the product to avoid impurity entering the product.
- 7) Do not carry out the reflow process more than 5 times. If the melting point of solders is lower, the peak temperature should be accordingly reduced.

Reliability specifications


Test Item	Description		
Temperature/Humidity Bias	1,000 hours at +85°C/85% R.H. under bias (JESD22-A101A-B)		
Thermal shock	100 cycles air-to-air thermal shock from -40°C to +125°C with 15minute soaks. (IEC 68-2-4)		
High Temperature Storage	1,000 hours at +105℃ environment(IEC 68-2-2)		
Low Temperature Storage	1,000 hours at -40℃ environment(IEC 68-2-1)		
High Temperature Bias	1,000 hours at +105℃ under bias(IEC 68-2-2)		
Low Temperature Bias	1,000 hours at -40℃ under bias(IEC 68-2-1)		
Drop test	Using 150g fixture, 3 drops along each of 6 axes from 1.5m height onto slippery marble floor(IEC 68-2-27)		
ESD-HBM	3 discharges of ± 2 kV direct contact to I/O pins. (MIL 883E, Method 3015.7)		
ESD-LID/GND	3 discharges of ± 8 kV direct contact to lid while unit is grounded. (IEC 61000-4-2)		
ESD-MM	3 discharges of ± 200 V direct contact to I/O pins. (ESD STM5.2)		
Vibration test	4 cycles of 20 to 2,000 Hz sinusoidal sweep with 20 G peak acceleration lasting 12 minutes in X, Y, and Z directions (Mil-Std-883E, Method 2007.2 A)		

Reflow test	5 reflow cycles with peak temperature of +260℃
Mechanical Shock	3 pulses of 10,000 G in the X, Y, and Z direction (IEC 68-2-27, Test Ea)

Notes: After reliability tests are performed, the sensitivity of the microphones shall not deviate more than 3 dB from its initial value. After 3 reflow cycles, the sensitivity of the microphone shall not deviate more than 3dB from its initial value.

Packaging and marking detail

Model Number	Reel Diameter	Quantity Per Reel	Quantity Per Carton
ML-2664-3526-DT1H1	13"	5,000	5,000 * 10 = 50,000Pcs

Notes:

- 1) Dice are packaged in black carrier band which uses anti-electrostatic material. Each volume of packaged products is 5000 pcs.
- 2) The space between two dice is 8mm packaged in the carrier band with 12-mm width rolled in the reel of 13-inch diameter.
- 3) The package requirements mentioned below is the company's standard delivery specifications.

 If you need special packages, please contact our sales staff.
- 4) All dimensions are in millimeters (mm) with tolerance of \pm 0.3mm.

Materials statement

- ▶ Meets the requirements of the European RoHS directive 2011/65/EC as amended.
- Meets the requirements of the industry standard IEC 61249-2-21:2003 for halogenated substances and SV SensTech Green Materials Standards Policy section on Halogen-Free.

Remarks

- > MSL (moisture sensitivity level) Class 1.
- Maximum of 3 reflow cycles is recommended.
- In order to minimize device damage:
 - Do not board wash or clean after the reflow process.
 - Do not brush board with or without solvents after the reflow process.
 - Do not directly expose to ultrasonic processing, welding, or cleaning.
 - Do not insert any object in the port hole of device at any time.
 - Do not apply over 30 psi of air pressure into the port hole.
 - Do not pull a vacuum over the port hole of microphone.
 - Do not apply a vacuum when repacking into sealed bags at a rate faster than 0.5 atm/sec.

Version updates

Version	Updated Content	Updated Date
1.0	Initial release	2021-09-25
1.1	Add FR Limit Update Time Diagram	2022-03-11
1.2	Update reliability specifications	2022-5-16

Contact

SV SensTech Co., Ltd

Address: F2, No. 200,

Linghu Avenue, Wuxi, Jiangsu,

Zip code 214135

Tel.: 86-510-85622282

Email: sales@svsens.com

Website: www.svsens.com

华景传感科技(无锡)有限公司

中国传感网国际创新园

江苏省无锡市新吴区菱湖大道200号F2栋

邮编: 214135

电话: (86) 0510-85622282

邮箱: sales@svsens.com

网页: www.svsens.com